Context-Based Pedestrian Path Prediction

نویسندگان

  • Julian F. P. Kooij
  • Nicolas Schneider
  • Fabian Flohr
  • Dariu Gavrila
چکیده

We present a novel Dynamic Bayesian Network for pedestrian path prediction in the intelligent vehicle domain. The model incorporates the pedestrian situational awareness, situation criticality and spatial layout of the environment as latent states on top of a Switching Linear Dynamical System (SLDS) to anticipate changes in the pedestrian dynamics. Using computer vision, situational awareness is assessed by the pedestrian head orientation, situation criticality by the distance between vehicle and pedestrian at the expected point of closest approach, and spatial layout by the distance of the pedestrian to the curbside. Our particular scenario is that of a crossing pedestrian, who might stop or continue walking at the curb. In experiments using stereo vision data obtained from a vehicle, we demonstrate that the proposed approach results in more accurate path prediction than only SLDS, at the relevant short time horizon (1 s), and slightly outperforms a computationally more demanding state-of-the-art method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pedestrian Path Prediction with Recursive Bayesian Filters: A Comparative Study

In the context of intelligent vehicles, we perform a comparative study on recursive Bayesian filters for pedestrian path prediction at short time horizons (< 2s). We consider Extended Kalman Filters (EKF) based on single dynamical models and Interacting Multiple Models (IMM) combining several such basic models (constant velocity/acceleration/turn). These are applied to four typical pedestrian m...

متن کامل

Model-based Pedestrian Trajectory Prediction using Environmental Sensor for Mobile Robots Navigation

Safety is the most important to the mobile robots that coexist with human. There are many studies that investigate obstacle detection and collision avoidance by predicting obstacles’ trajectories several seconds into the future using mounted sensors such as cameras and laser range finder (LRF) for the safe behavior control of robots. In environments such as crossing roads where blind areas occu...

متن کامل

A Study of Pedestrian Movement on Crosswalks Based on Chaos Theory

Walking, as an important transportation mode, plays a large part in urban transportation systems. This mode is of great importance for planners and decision-makers because of its impact on environmental and health aspects of communities. However, this mode is so complex in nature that makes it difficult to study or model. On the other hand, chaos theory studies complex dynamical nonlinear syste...

متن کامل

CASNSC: A context-based approach for accurate pedestrian motion prediction at intersections

Intention recognition of pedestrians is crucial to safe and reliable working of 1 autonomous vehicles, when serving as, for instance, indoor service robots or 2 self-driving cars in busy urban scenes. Previously, Chen et al. [2016] combined 3 Markovian-based and clustering-based approaches to learn motion primitives and 4 subsequently predict pedestrian trajectories by modeling the transition b...

متن کامل

CASNSC: A context-based approach for accurate pedestrian motion prediction at intersections

Intention recognition of pedestrians is crucial to safe and reliable working of autonomous vehicles, when serving as, for instance, indoor service robots or self-driving cars in busy urban scenes. Previously, Chen et al. [2016] combined Markovian-based and clustering-based approaches to learn motion primitives and subsequently predict pedestrian trajectories by modeling the transition between l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014